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1 Motivation and statement of the crystalline conjecture

1.1 Crystalline conjecture

TO DO: clarify where we’re assuming that V is absolute unramified. Occasionally we need
V = W , e.g. when we refer to the Hodge filtration on crystalline cohomology (it’s really on de
Rham cohomology, but they agree in this case), and when applying the Künneth formula in
crystalline cohomology.

Let K be a complete discretely valued field of mixed characteristic (0, p), with ring of integers
V and perfect residue field k. Let X be a smooth projective V -scheme. Fontaine’s crystalline
conjecture states that there is a natural isomorphism between the p-adic étale cohomology of
the generic fiber of X and the crystalline cohomology of the special fiber, after tensoring both
up to the p-adic period ring Bcris:

α : H∗ét(XK ,Zp)⊗Zp Bcris ' H∗cris(Xk/W (k))⊗W (k) Bcris (1)

compatible with filtration, Galois action, and Frobenius. (Étale cohomology has a Galois ac-
tion but trivial Frobenius and filtration; crystalline has a Frobenius and Hodge filtration but no
Galois action.) It follows from this that the étale and crystalline cohomology of X, equipped
with all available structure, completely determine each other: roughly, to get from one to the
other, tensor up to Bcris and take invariants under all extra structure that you don’t want to
have.

The crystalline conjecture also has a more subtle integral version, stating that there is a natural
almost isomorphism

α : H∗ét(XK ,Zp)⊗Zp Acris ' H∗cris(X/W (k))⊗W (k) Acris, (2)

again compatible with filtration, Galois action, and Frobenius. However, most of the paper
deals with the following mod-pn version, still with an almost isomorphism:

α : H∗ét(XK ,Z/p
nZ)⊗Zp Acris ' H∗cris(Xn/Wn(k))⊗W (k) Acris, (3)

∗Notes for a talk in Berkeley’s Student Arithmetic Geometry Seminar, on Wiesława Nizioł’s paper of the
same title.
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where the subscript n denotes reduction modulo pn. Here we assume that dim(X/V ) < p− 2,
and V is absolutely unramified. These hypotheses are necessary, because the derived-mod-pn
versions of the two sides of the equation pick up pn-torsion from H∗+1, and without some as-
sumptions it may be that H∗+1

cris has more torsion than H∗+1
ét .

In this talk we will consider the mod-pn situation, but we will attempt to gloss over some
of the technical clutter about torsion.

The ring Bcris is a localization of Acris; let’s recall the construction of the latter. Begin with the
completed algebraic closure C of K, with ring of integers OC . This has tilt O[C := lim←ϕOC/p,
a perfect Fp-algebra. The period ring Ainf is defined to be W (O[C). This is equipped with a
canonical surjection θ : Ainf → OC , and Acris is defined to be the p-adically completed PD-
envelope of the ideal ker θ ⊂ Ainf; namely,

Acris = p− adic completion of
(
Ainf

[
αn

n!
: α ∈ ker θ, n ≥ 1

]
⊂ Ainf[1/p]

)
(4)

Note in particular that Acris is much larger than K. This says that some transcendental “pe-
riods” are needed to define an isomorphism between étale and crystalline cohomology; these
periods have to do with doing calculus on some formal PD-thickening of Xk.

Remark: Acris[0] can be identified with the crystalline cohomology ring H∗cris(V /W (k)), so
the crystalline side of the equation can be rewritten as

H∗cris(Xk/W (k))⊗W (k) Acris
∼= H∗cris(Xk/W (k))⊗W (k) H

∗
cris(V n/W (k)) (5)

∼= H∗cris(XV n
/W (k)), (6)

using the Künneth formula. From now on, we will always interpret the crystalline side of the
equation like so. So we really want a map from H∗ét(XK ,Z/pZ) ⊗Zp Acris to H∗cris(XV n

/W (k))
inducing an almost isomorphism

H∗ét(XK ,Z/pZ)⊗Zp Acris ' H∗cris(XV n
/W (k)). (7)

1.2 Motivation for use of K-theory

At this point, one may ask: if we want a map from étale cohomology to crystalline cohomology,
why would we pass through algebraic K-theory? One motivation for this is as follows: for X
smooth over a field, there exists a fourth-quadrant spectral sequence

Epq
2 = Hp(X,Z(−q/2)) =⇒ K−p−q(X) (8)

relating Voevodsky’s motivic cohomology groups Hp(X,Z(−q/2)) to the K-groups of X.1 This
degenerates after tensoring with Q; in fact, we will impose sufficiently restrictive hypotheses
for it to degenerate integrally, which is possible by the work of Soulé. In particular, taking

1The coefficient group Z(−q/2) is by definition some complex of abelian sheaves on XZar, which is 0 for q
odd and Z[0] for q = 0.
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p = j and q = −2i, we get that Hj(X,Z(i)) is (possibly up to torsion) a piece in a canonical
filtration of K2i−j. Since motivic cohomology maps to étale and crystalline cohomology, we
expect a diagram of the form

(filtered piece of K-group)
ccrisij

ssggggggggggggggggggg
cétij

**VVVVVVVVVVVVVVVVVV

(crystalline cohomology) (étale cohomology)αoo

(We will be more precise about this later.) It will turn out that cétij is surjective and its kernel
can be controlled. We then construct the dotted morphism by taking preimages in K-theory,
mapping down to crystalline cohomology, and showing that the “error terms” in K-theory map
to 0.

This gives us our map. From this point, the rest of the proof is more or less formal: it suffices
to check that the map is compatible with all relevant structures as well as Poincaré duality and
some cycle classes.

2 K-theory and its comparison to étale cohomology

2.1 Introduction to algebraic K-theory

For X a scheme, the 0th algebraic K-group K0(X) is the Grothendieck group of finite-rank
vector bundles on X. This was preceded by (and is motivated by) its obvious analogue for
topological spaces, with topological R- or C-vector bundles.

Example: If A is a Dedekind domain, K0(SpecA) ∼= Z⊕PicA, with the Z indicating rank.

Example: K0(PnK) ∼= Z⊕n+1. One way to think of this is that K0 is built out of the mo-
tivic cohomology groups H2i(X,Z(i)) = CH i(X), which are Z for 0 ≤ i ≤ n and 0 otherwise.
So K0(PnK) admits a descending filtration F i

γ whose quotients are n + 1 copies of Z. Each
F i
γK0(PnK) can be identified with the Grothendieck group of coherent sheaves on PnK supported

in codimension at least i. (Here we are using the fact that the Grothendieck group of vector
bundles agrees with that of coherent sheaves, which is true in good situations but not in general.)

Historically, it took a lot of work to find the correct definitions of higher K-theory for a
ring, and more work for a scheme. This was finally accomplished by Quillen’s Q-construction
in the 1970’s. For X a scheme, consider the category Vect(X) of vector bundles on X, a
full subcategory of the abelian category of coherent sheaves. The Quillen K-groups of X are
Ki(X) = πi(ΩBQVect(X)), the ith homotopy group of the loopspace of the classifying space
of the geometric realization of the nerve of Vect(X).

K-theory forms a ring spectrum, so it is a contravariant functor in the scheme X, behaving like
cohomology with coefficients in a ring. One can moreover consider K-theory with coefficients;
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this is related to regular K-theory by a universal coefficient theorem (i.e. derived tensor prod-
uct).

Remark: K-groups are constructed as homotopy groups, and as such they are difficult to
calculate, particularly if one is interested in torsion. For example, it is known that K0 through
K4 of SpecZ, with Z coefficients, are Z,Z/2,Z/2,Z/48, and 0. But K5(Z) is only known to be
isomorphic to Z⊕ (some finite 3-torsion group).

2.2 Thomason’s comparison between algebraic and étale K-theory

As mentioned before, there is a spectral sequence

Epq
2 = Hp

mot(X,Z(−q/2)) =⇒ K−p−q(X) (9)

relating algebraic K-theory to motivic cohomology, and similarly with Z /`n coefficients on each
side. There is also a so-called étale K-theory, which is computed by a similar spectral sequence
built out of étale cohomology:

Epq
2 = Hp

ét(X,Z /`n(−q/2)) =⇒ Két
−p−q(X;Z /`n), (10)

where we are using ` instead of p to avoid confusion with the coordinate p in the spectral
sequence. There is a canonical map K−p−q(X;Z /`n)→ Két

−p−q(X,Z /`n), and a corresponding
map in cohomology Hp

mot(X,Z /`n(−q/2)) → Hp
ét(X,Z /`n(−q/2)). We view these as maps of

(bi)graded rings:

K∗(X;Z /`n)→ Két
∗ (X;Z /`n), (11)

H∗mot(X,Z /`n(∗′))→ H∗ét(X,Z /`n(∗′)) (12)

The big theorem of Thomason (and that of Levine) says that under reasonable hypotheses on
X, these maps are not far from being isomorphisms. That is, we can measure how much étale
K-theory differs from algebraic K-theory, and similarly how much étale cohomology differs from
motivic cohomology.

More precisely: suppose X is smooth and of finite type over a field K that contains a primitive
nth root of unity ζ. Then H0

mot(SpecK,Z /`n(1)) = µ`n(K). This contains the element ζ,
which we pull back to H0

mot(X,Z /`n(1)) to get the so-called Bott element βn. There exists a
corresponding element βn ∈ K2(X;Z /`n), roughly because this receives a contribution from
H0

mot(X,Z /`n(1)) in the spectral sequence.

Theorem 2.1. (Thomason, Levine)2 Suppose X is finite type over a separably closed field of
characteristic not p, and p 6= 2.3 Then the ring maps (11) and (12) are given by inverting the
elements βn.

2Thomason proved it for K-theory in a 116-page paper, and Levine used Thomason’s methods to prove the
corresponding result for cohomology.

3If p = 2, we must also assume that there is a square root of −1 on X.
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3 Outline of the construction
We are now ready to tackle Nizioł’s construction of the map

α : H∗ét(XK ,Z /p
n)→ H∗cris(XV ,n/Vn,OXV ,n/Vn

). (13)

In fact we will actually construct it after applying a sufficiently high Tate twist to the coeffi-
cients on both sides. (Since crystalline cohomology has no Galois action, the Tate twist on it
refers instead to twisting the Hodge filtration and the Frobenius.) First we must impose some
hypotheses to get around issues of torsion. Let d = dim(X/V ), let i > 0 and j ≥ 4d(d+1)(d+2)

3

be integers, and let the prime p be sufficiently large, possibly depending on d, i, and j.4

Consider have the following diagram:

F i
γ/F

i+1
γ Kj(XV ;Z/pn) ∼

j∗
//

ccrij
��

F i
γ/F

i+1
γ Kj(XK ;Z/pn)

cétij
��

H2i−j
cris (XV ,n/Vn,OXV ,n/Vn

(i)) H2i−j
ét (XK ,Z/pn(i))α2i−j,i

oo

Here, the two objects on the top are filtered pieces of algebraic K-theory, under the γ-filtration
defined by the spectral sequences discussed earlier. The top map is induced by XK ↪→ XV and
the functoriality of Kj; Nizioł shows that it is an isomorphism. The vertical maps are Chern
class maps, which factor through motivic cohomology

Proposition 3.1. (Nizioł, based on work of Thomason and Soulé) Under the hypotheses above,
the map cétij factors as

F i
γ/F

i+1
γ Kj(XK ;Z /pn)→ F i

γ/F
i+1
γ Két

j (XK ;Z /pn)
∼→ H2i−j(XK ,Z /p

n(i)), (14)

where the second map is an isomorphism and the first is surjective with kernel killed by a power
of the Bott element βn ∈ K2(XK ;Z /pn).

The desired map α2i−j,i is then defined by taking preimages in K-theory and then mapping
down to crystalline cohomology. It turns out that the image of βn in the crystalline cohomology
ring is a non-zero-divisor, so the error term disappears and α2i−j,i is well-defined. Choosing
suitably large i and j allows us to construct this map in any cohomological degree, provided
that p is greater than (approximately) 2d3

3
.

4The exact requirement is as follows: p ≥ max{3, i+ 1, d+j+3
2 }, and pn ≥ 5. If we relax this to merely p 6= 2

and pn ≥ 5, both parts of the claim may be off by T -torsion for some constant T = T (d, i, j).
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